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Some developments in the theory of turbulence 

By H. K. MOFFATT 
1)rpartrnent of Applied Mathematics and Theoretical Physics, 

Silver Street, Cambridge 

This is in no way intended as a review of turbulence- the subject is far too big for 
adequate treatment within a reasonably finite number of pages; the monumental 
treatise of Monin 8: Yaglom (1971, 1975) bears witness to this statement. It is rather a 
discourse on those aspects of the problem of turbulence with which I have myself had 
contact over the last twenty years or so. My choice of topics therefore has a very 
personal bias - but that  is perhaps consistent with the style and objectives of this 
rather unusual issue of J F N .  

I have approached the dynamical problem of turbulence via two simpler (but 
nevertheless far from trivial) problems - viz the convection and diffusion of a passive 
scalar field and of a passive vector field by turbulence of known statistical properties. 
Particular emphasis is given to the method of successive averaging (a simplified 
version of the renormalization-group technique) which seems to me to have consider- 
able potential. The difficulty of extending this method to the dynamical problem is 
discussed. 

In a final section ( 5  6) I have allowed myself the luxury of discussing a somewhat 
esoteric topic - the problem of inviscid invariants and their relationship with the 
topological structure of a complex vorticity field. The helicity invariant is the proto- 
type; it is identifiable with the Hopf invariant (1931) and it may be obtained from 
appropriate manipulation of Noether’s theorem (Moreau 1977). A suggestion is made 
concerning possible measurement of this fundamental measure of ‘ lack of reflexional 
symmetry ’ in a turbulent flow. 

1. Preamble 
Turbulence is a phenomenon which occurs, whether we like i t  or not, in an extra- 

ordinarily wide range of circumstances, both in technological contexts (e.g. in aero- 
dynamics, hydraulics, naval engineering and chemical engineering), and in the natural 
contexts provided by geophysics, particularly meteorology and oceanography, and 
astrophysics. In all such contexts, the Reynolds number R, constructed from scales 
characterizing the input of energy to the system, islarge (typically 106or muchgreater), 
and the turbulent state, rather than the laminar state, must be regarded as natural, 
and unavoidable, in such circumstances. 

It is not surprising then that enormous efforts have been devoted on a worldwide 
scale to fundamental studies of turbulence, and the large number of papers published 
in J F H  during the last 25 years on different aspects of the problem of turbulence reflect 
in some measure the scale and intensity of this activity. There have been striking 
advances both on the experimental side (notably in the identification of ‘coherent 
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structures’ - or ‘big eddies’ as Townsend 1956 called them - in turbulent shear flows) 
and on the computational side (e.g. in direct numerical simulation of turbulence). On 
the purely theoretical side, however, fearsome technical difficulties (of which a sample 
may be found, for example, in papers of Kraichnan 1959, 1965, 1977; Edwards 1964, 
and others) have been encountered, and the realization has developed, during these 
last 25 years, that  the problem of turbulence, always regarded as difficult, is in fact 
extremely difficult, and the time-scale of significant advance in understanding has 
expanded accordingly. 

Fundamental studies, such as those mentioned above, are as yet a t  two stages 
removed from useful exploitztion in technological (or other) contexts. Firstly, they 
relate generally to the idealization of homogeneous turbulence with zero mean velocity 
(Batchelor 1953). This idealization, introduced like so many other fundamental ideas 
in fluid mechanics by G. I. Taylor (1935), has perhaps attracted disproportionate 
attention by fundamental theoreticians in relation to the immediate applicability of 
results to turbulent flows of practical importance, in which the mean flow is generally 
a prominent feature, and which tend to be dominated by interaction between this 
mean fLow and the most energetic ingredients of the turbulence. When I started research 
myself in turbulence in 1958, I was so preoccupied with understanding and mastering 
the techniques of homogeneous turbulence that it was fully two years before I became 
even aware of the fact that  shear flow turbulence (boundary layers, pipe and channel 
flow, jets and wakes and the rest) exists in its own right and requires a somewhat 
different approach ! Curiously, in some respects, the shear flow problem appears to me 
to  be easier than the ‘homogeneous’ problem: if you linearize the shear flow problem 
(i.e. neglect terms quadratic in fluctuating quantities), you arrive at a non-trivial linear 
problem (of Orr-Sommerfeld type in plane shear flow) with solutions generally 
representing damped waves (see, e.g., Landahl 1967), and this a t  least provides a 
starting point towards understanding the phenomenon of coherent structures and the 
related problem of energy transfer to the turbulence. On the other hand, if you linearize 
the homogeneous problem, you are left with the relatively trivial probleE of the ‘final 
period of decay’ (Batchelor 1953, $5.4) - which by its nature can provide no insight 
into the central problem of the energy cascade a t  high Reynolds number. Thus, 
linearization in shear flow turbulence arguably provides a useful starting point, 
whereas linearization in homogeneous turbulence does not; in restricting attention to 
homogeneous turbulence, one is forced to  focus attention on those aspects of the 
problem which are essentially nonlinear. Small wonder then that investigations of 
homogeneous turbulence have been so fraught with difficulty. 

The second stage of removal from practicality lies in the fact that  even the new 
insights that  are emerging in studies of shear jiozu turbulence are notably difficult to 
exploit in a useful way in the modelling of turbulence in technological applications. It 
is perhaps remarkable how persistent the primitive ideas of eddy viscosity, mixing 
length, and the like, have been in practical contexts where predictions of the effects 
of turbulence just have to be made. It is of course the simplicity of application of these 
primitive concepts that  makes them attractive to users; and if a more sophisticated 
‘closure ’ scheme brings no guarantee of better predictions outside the range of geo- 
metries and parameters previously documented, then i t  is of little value to the user. 
Sometimes a user may suffer from the delusion that a more ‘ advanced ’ closure scheme 
must, merely by virtue of its complexity, provide a better representation of the effects 
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of turbulence; but close inspection usually reveals that  accurate ‘prediction’, as 
retrospective rationalization of experimental results is so often misleadingly described, 
is associated not so much with the genuine physical content of a closure scheme as with 
the number of disposable parameters that  it contains and which may be chosen to 
optimize the fit with observations. I n  genuine predictions for complex geometries that 
have not yet been subjected to experiment (or in extrapolation from laboratory scale 
to prototype scale) there is an element of chance in the choice of any particular closure 
scheme and, since as yet there is in general no rational basis for the choice, the one that 
is guided by simplicity and ease of application is surely the one to go for. 

Despite this somewhat negative assessment of the current relevance of fundamental 
studies of homogeneous turbulence to real coinplex turbulent flows, I remain optimistic 
that it is simply a matter of time before important bridges are established that zuill 
permit the incorporation of the results of such studies in practical prediction schemes. 
If one takes the view that there are features of all turbulent flows which have a uni- 
versal character (independent of the global geometry and global distribution of energy 
sources), then it is surely sensible to seek to understand these features in an idealized 
context in which the global geometry and constraints play a minimal role. Homo- 
geneous turbulence undoubtedly provides one such idealization : the fluid boundaries 
are imagined removed ‘to infinity’, and energy may be imagined as ‘supplied’ to the 
turbulence (by random stirring) a t  a rate E per unit mass on some range of length 
scales of order, say, 1, and in a statistically uniform manner. The resulting velocity 
field U(X, t )  may, on dimensional grounds, be expected? to have a root-mean-square 
value u, = (u*)l of order 

u, ff (€ lo)+ .  (1.1) 

Its energy spectrum function E ( k )  may be expected to depend on the spectrum of the 
stirring forces (or energy input) for k Z;l; but for k $ Z;I (i.e. on much smaller scales 
than I,) a universal character may reasonably be anticipated. 

The dynamics of these small-scale ingredients, and the means by which they extract 
energy from the ‘energy-containing’ ingredients ( k  N l ~ l ) ,  is surely a t  the heart of the 
problem of homogeneous turbulence. An understanding of this latter process is 
crucially important in the problem of ‘subgrid-scale modelling ’ which arises in com- 
putational studies of turbulent shear flows of the type initiated by Deardorff (1970); 
here an attempt is made to  follow the detailed evolution of large eddies and energy- 
containing eddies and their interaction with the mean shear. But finite computer 
capacity does not permit the same direct numerical simulation of eddies on much 
smaller scales; a t  the crudest level, the effect of these smaller eddies may be repre- 
sented by an eddy viscosity of order uul,, where 1 ,  is the scale of the computational 
grid used, and 

Subgrid modelling seeks to  improve on this primitive description. 
The small-scale ingredients are of course also of great importance in their own right, 

since they play a dominant role in problems of heat and mass transfer by turbulence 
(see for example the review article, written just 25 years ago, by Batchelor & Townsend 

t If ,  that is, one lJelic\-rs i l l  thc irrrlrvitricr of viscosity ill such estimatrs wlicn R %- 1. 
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1056, in G. I. Taylor’s 70th anniversary volume). Given the extreme difficulty of the 
dynamical problem of turbulence, there is much to be said for approaching i t  via this 
much easier problem of the evolution of a ‘passive’ scalar field O(x ,  t )  satisfying the 
equation 

ao 
- + u . vo = k-czo, 
at 

where K is the relevant molecular diffusivity, and t.he statistical properties of u(x, t )  
are (for the moment) assumed known. I shall discuss some aspects of this problem in 
the following section. 

An even better springboard for the study of the dynamical problem is provided by 
study of the evolution ofa  passive solenoidal vector field B(x, t )  satisfying the equation 

_ -  - V A ( U A B ) + ~ P B ,  i3B 
at 

where again the statistical properties of u are assumed known. (The magnetic field B 
in a fluid of magnetic diffusivity 7 satisfies just this equation.) The formal similarity 
between (1.4) and the vorticity equation (with zero forcing), 

a 0  
itt 
-- - V A (U A o ) + v V 2 0 ,  

was pointed out by Elsasser (19iG) and developed in the context of turbulence by 
Batchelor (1950). The supplementary constraint, o = V A U ,  of course makes (1.5) 
non-linear and profoundly difficult to handle. In  (1 .4), B is freed from this constraint 
and a wider class of problems is therefore covered by ( 1.4) than by ( 1.5). If generality 
brings linearity as a bonus, no further motivation is needed for the detailed study of 
(1.4). However, enthusiasm for this procedure should be tempered by the following 
consideration : an explicit solution of (1.4) of the form 

where the functional on the right depends on values of u at  all points 5. and all times 
7 < t, would not in fact provide a solution of (1.5); the formal statement analogous to 
( 1 . G )  is 

w(x, t )  = 9(u(5,7); x, t ;  I ! } ,  ( 1 . 7 )  

which, in conjunction with 

1 (‘ - ”) A o(5”7) + surface contributions, 
15 - 5 / 1 3  

u(5,7) = - 47l 

would merely provide a restatement of (1.5) as an integral equation. Despite this 
reservation, some results relating t o  the B field can usefully be carried over to the 
o field, and 1 am of the view that the analogy between (1.4) and (1 .5)  is a powerful 
one that has not yet heen exploited to  tho fullest possible extent. 
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2. The scalar field problem 
One of Taylor’s great contributions to the theory of turbulence lay in his (1921) 

description of the dispersion of marked fluid particles by turbulence. This description 
leads to the asymptotic law 

(X2) 2D,,t, (2 .1)  

where X(a,t) is the position of the marked particle a t  time t ,  labelled by its initial 
position a (with (X) = 0, the mean velocitJy being assumed zero). D,, is the effective 
diffusivity, and, in isotropic turbulence, i t  is given by 

(2.2) 

where v = aX/a t  is the Lagrangian velocity. The appearance of the velocity correlation 
function in (2.2) is highly significant; the Taylor description of turbulent diffusion 
constituted the first genuinely statistical approach to turbulence; it was no doubt this 
natural appearance of a correlation function which led to his subsequent (1935) 
formulation of the dynamical problem in terms of (Eulerian) correlation functions. 
The problem of expressing Lagrangian correlations in terms of Eulerian correlations 
remains largely unsolved to this day - for a discussion of great interest in this context, 
see Patterson & Corrsin (1 966). 

The result (2.2) can be obtained directly from (1.3),  assuming K = 0 (as is appro- 
priate for a field of ‘ marked particles ’ which do not lose their identity as they follow 
the fluid motion). It is therefore tempting to suppose (as is often done) that (2 .2)  
provides the correct expression for the effective eddy diffusivity of turbulence acting 
on a scalar field of scale L large compared with the turbulent scale Z,, in the asymptotic 
limit 

UO 10 Pe=--tcO. 
K 

(2 .3)  

There is, however, a fundamental dificulty associated with the total neglect of 
molecular diffusivity effects. It is clear that  continuous mixing of a non-uniform 
0 field with K = 0 may lead to unbounded increase in 1V0I ;  and in fact, writing 
0 = 0 - (O), i t  is easily shown from ( t  .3) that, when K = 0, ((V0j2) does indeed in 
general increase without limit under the action of turbulence. In a fluid with non-zero 
K (no matter how small) this result is clearly unphysical. The actual magnitude of 
((VO)2) under statistically steady conditions is determined by the fact (Batchelor 
1959) that ~ ( ( V 0 ) z )  remains independent of K in the limit K +  0;  in dimensionless terms, 

((V8)2) - Pe(C0,)2, (2.4) 
where 0, = (0). 

Since i t  is necessary to invoke molecular diffusivity effects in order to arrive at  a 
finite vaIue for ((V8)2), i t  is arguable that the same molecular diffusivity effects may 
play an important role in determining the effective diffusivity D acting on a dispersed 
clontl of passive (wittiininant. This ‘interaction ’ ptnblcm wits addresscd by Snffinnn 
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(19G0, 1962) who showed that, if a heat spot is released a t  t = 0 in a turbulent flow, the 
dispersion for small t is given by 

(2.5) 

where D,,, is the Taylor diffusivity, as given above, and tL is the Lagrangian corre- 
lation time. The reduction in dispersion (at  order t 3 )  due to interaction between 
convective and diffusive effects mas noteworthy, and led Saffman, via intuitive 
arguments, to  the conclusion that a similar reduction would persist asymptotically 
for large times; indeed, from Saffman's results, one may infer an asymptotic effective 
cliffusivity 

D, = D,,, + K - CR, K ,  (2.6) 

where G = O ( l ) ,  R, = u,h/v and h = (i,?scg/(w2)): is the dissipation length scale. The 
reduction term may be large, even if K is small, when R, 3 1. Arguments supporting 
Saffman's conclusion have been developed by Phythian & Curtis (1978). 

Saffman's approach was essentially Lagrangian in character, and i t  is mathe- 
matically secure only on the short time scales for which (2.5) is valid. An alternative 
approach, which is Eulerian in character, has been advocated by Rose (1977) in a 
' subgrid-scale modelling ' study, and seems to me to offer great proniise. The idea, 
derived from the ' renormalization-group ' techniques of quantum field theory (Nelkin 
1974, 1975), may be explained in crude and simple terms as follows.~ Suppose we 
imagine the u and 0 fields decomposed into ingredients (ur, 0,) ( r  = 1,2, ..., n )  on 
scales I, with 

1, 5 l W - I  5 ... 5 I,. (2.7) 

(Equivalently, wavenumber space may be considered decomposed into spherical 
shells A,: k, < k < kr+, with k, = 1;l.) The smallest scale I, can be taken as the scale of 
the conduction cut-off (Batchelor 1959); for K 2 1 7 ,  this is 

1, N ( K 3 / 6 ' ) ) ,  (2.8) 

where 6' is as previously defined. The PBclet number Pe, based on u, and 1, is then (at 
most) of order unity, and the eddy cliffusivity associated with the ingredient u, 
(assumed isotropic) is then given by 

2 
D, 7z k-2E(k)d/,. ( - PP:; K )  (2.9) 

where A, is the 'shell' k > k,l. This expression may be obtained by standard methods; 1 
strictly it is valid only if Pen < 1, although it may also be reasonably accurate for a11 
Pen 5 1.  

averaging over 
the scale I n  has led to a small increase in the diffusivity (in technical language, it has 

The effective diffusivity acting upon Ol + . . . + is then K + 

t The essence of the argument preserit,ed here, and the result ( ? . i n ) ,  are the  to  Howells 

1 This involves calculation of 0, in terms of u, from the diffusion cqiiation h-C2O0, x u,. VO,,! 
(1960) - one of t,he shortest papers ever pnblished in JFAI ! 

(0, = B,+O,+ . . . + O , , + , ) ;  t,hm ronst,riict.ion nf (u,,O,,) = -D,,'i@,,. 
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been renormalized). We may now repeat the process, averaging now over the larger 
scale we then find an incremental diffusivity 

and so on. 
If we now let n-t co and each A,+ 0, then, writing D ( k )  for the eddy diffusivity 

acting on all scales < k- l ,  relations of the type (2.9), ( 2 .  lo), ... are a11 replaced by the 
differential relationship 

k-2 E(k )  d k ,  (2.1 1) 
2 

3(D + K) d D  = - 

which integrates very easily (with boundary condition D(co) = 0) to give 

(D + K ) ~  = fskm ky2 E(k , )  dk, + K ~ .  (2.12) 

The first term on the right-hand side dominates when k - 1;l, and the effective 
diffusivity acting on scales I, 2 I, (i.e. acting on the mean field 0,) is thcn 

(2.13) 

This expression (which contains no undetermined dimensionless constants) is to be 
compared with the expression (2.2).  I n  order of magnitude (to within a factor of order 
unity) 

(2.14) 

where now 1, is the Eulerian integral scale. The experimental results of Snyder & 
Lumley (1971) show that tL x lo/uo, so that Do is of the same order of magnitude as 
D,,. Thus inclusion of the effects of molecular diffusivity has apparently little effect in 
modifying the Taylor diffusivity. Experimental discrimination between the result 
(2.12) and Saffman's prediction (2.6) appears desirable. The laser technique developed 
by Fermigier (1980) may be well adapted for this type of investigation. 

A result of the form (2.12) implies a simple relationship between the constants C 
and B occurring in the inertial range laws 

~ ( k )  = C ~ B E - : ,  r ( k )  = ~ @ k - f ,  (2.15) 

where r(k) is the spectrum function of the 0 field, and q is the rate of cascade of 
(@)-stuff (Ratchelor 1959) through the spectrum. For consistency, we must havet 

I n  the part of the inertial range for which both of (2.15) are valid, 

and 

(2 .17)  

(2.18) 

t This neglects transfer of (02)-stuff across unveniimber Ic by the straining action of iargcr 
eddies - see Hovvc~lls ( 1980). 
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and hence, from (2.16), 

(2.19) 

The constant C is (experimentally) better determined than B, and the most reliable 
value is given by Monin & Yaglom (1975, p. 465) as C = 1-5. The corresponding value 
of B from (2.19) is also B z 1.5. The experimental evidence collected by Monin & 
Yaglom (1975, pp. 497-505) suggests a preferred value R M 1.4, but the scatter is 
considerable. The result (2.19) is therefore certainly not inconsistent with observation. 

The above calculation is open to criticism on a number of grounds, but I have 
thought i t  useful to include i t  in the present discussion, because i t  seems to me to 
demonstrate the potential power and essential simplicity of the ‘ successive averaging ’ 
or ‘ renormalization-group ’ technique. I have deliberately simplified the discussion 
here, but readers who have not done so already may be encouraged to study the paper 
of Rose (1977) in which the treatment is more precise and the effects explored more 
subtle. The renormalization-group technique has been systematically expounded in 
the context of turbulence by Forster, Nelson & Stephen (1977) but, as indicated by 
the title of their article, ‘Large distance and long-time properties of a randomly 
stirred fluid ’, the aim there was to understand asymptotic large-scale behaviour 
(k+ 0 in spectral terminology, cf. Batchelor & Proudman 1956; Saffman 1967) rather 
t han properties of the energy-containing ingredients of the turbulence. 

3. The vector field problem; helicity and the a-effect 

context of the equation 
The double-length scale approach was introduced to  marvellous effect in the 

8B/at = V A (U A B)+yV2B, V .  B = 0, (3.1) 

by Steenbeck, Krause & RBdler ( 1  966). This work is perhaps chiefly of interest in 
geomagnetic and astromagnetic contexts; but, as I have argued in 0 1, an  under- 
standing of the consequences of (3.1) is a valuable preliminary to any attack on 
equation (1..5), and it  is in this spirit that  I shall discuss the topic here. 

The above paper by Steenbeck, Krause & RLidler, and the series of papers which 
followed in the period 1966-70, were published in German, and i t  was some time before 
the results filtered through to  the West.? I first learnt of the existence of the papers in 
1969, and was acutely interested to  read them, as I was working on the same problem 
a t  that  time. Never was I more conscious of my total lack of knowledge of the German 
language ! A young lecturer in DAMTP of German nationality came to my rescue, 
and went over the papers with me line by line. The outstanding discovery, recorded in 
the 1966 paper, was the vital relevance of ‘Schraubensinn’, literally ‘screw-sense ’, 
now better known as ‘helicity’, in the statistical analysis of (3.1). Defining the mean 
liclirity of a homogeneous field of turbulence as 

ie = (u.o) ,  (3.2) 

t Paul Roberts and Michael Stix provided an invaluable service when they published an 
English tratislatiotr of  the papers as NCAR-TN-1A-60 in June 1071. 
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what Steenbeck & Krause (1966) had in effect shown was that, if 2 $; 0, then, in 
general, equation (3. 1 )  admits instabilities on scales large compared with the turbulent 
scale 1,. The implications in geomagnetic and astromagnetic contexts have been 
immense. The recent publication of the theory in book form (Krause & Radler 1981) 
is greatly to be welcomed; for complementary accounts of this rapidly growing field 
of activity, see also Moffatt (1978) and Parker (1979). 

The essence of the two-scale approach is as follows: let u = U + u’, B = B ,  + b’, 
where {u’) = (b’) = 0. Then the mean of (3.1) is 

aB,/at = V A & + V A (U A B,) + vV2Bo, (3.3) 

where 8 = (u’ A b‘). The fluctuation equation for b‘ determines b‘ (and hence 8) as 
a linear functional of B,. I n  the simplest case of isotropic turbulence, the relation 
between & and B ,  takes the form 

& = aB,-pV A B,+ ..., (3.4) 

where . . . indicates terms involving higher derivatives of B,, which may be expected to 
be small when the scale of the mean field B ,  is sufficiently large. Substitution in (3.3) 
gives 

aB,/at = V A (U A B,) + aV A B,  + (7 + p)  V2Bo. (3.5) 

Here a is a pseudo-scalar which is non-zero only if the turbulence lucks rejectional 
symmetry - in which case 2 is in general non-zero also; p on the other hand is a pure 
scalar, and it clearly plays the role of an eddy diffusivity. Equation (3.5) is known to 
admit unstable solutions for many geometrical configurations and many choices of 
U(x), a and y +/3 -- see the three books cited above. 

The parameters a and /3 now have to be determined and this problem is analogous to 
the problem of determining the eddy diffusivity D for a scalar field ( 3  2 ) .  The difficulties 
already encountered in the weak diffusion limit (here v+ 0) now become more acute. 
Expressions analogous to Taylor’s expression ( 2 . 2 )  can be obtained for a and p by 
Lagrangian analysis, and these expressions have been evaluated in numerical simu- 
lation experiments by Kraichnan ( 1 9 7 6 ~ )  b ) ;  but the same analysis implies unlimited 
increase in ( b’2) which is clearly unphysical. Only restoration of molecular diffusivity 
effects can yield a physically sensible result for this quantity. 

This problem is of central interest in its own right in astrophysical contexts. For 
example, the magnetic Reynolds number R, = uol , /~ associated with turbulence in 
the solar convection zone is of order 104 or 105 (and R N IO’R,), and there is no escape 
from consideration of the weak diffusion limit (y < uol,). 

The problem is also of acute interest in relation to its possible relevance to the 
analogous problem presented by the dynamical equation (1.5) when 

R = ~ , Z , / V  B 1 :  

if we cannot handle (3 .1)  when R, 9 1, what hope have we of ever being able to handle 
(1.5) when R 9 1 ? 

The question therefore arises as to  whether the renormalization-group technique, 
described in 5 2 ,  can be adapted to the vector field problem, with a view to determining 
asymptotic expressions for a and /3 as R,,,-+ cx). The formalism of Porster et al. (1977) 
has in fact been extended to hydromagnetic turbulence by Fournier ( 1  977) (see also 
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Pouquet, Fournier & Sulem 1978), but again with a view to asymptotic analysis of 
large-scale structures. A simple-minded approach (in the style of $ 2 )  runs immediately 
into an interesting difficulty, in that  the averaged equation ( 3 . 5 )  does not have the same 
mathematical structure as the parent equation (3.1) - it is of course this change of 
structure which makes the a-effect (as the appearance of the term aB, in (3.4) is 
known) of such fundamental importance; but, a t  the same time, it means that the 
problem (3.1) is not renormalizable in the same straightforward sense as was the 
problem ( 1.3). 

However, in the case of reflexionally symmetric turbulence, which is of course not 
without interest, ix = 0, and (3.5) does then have the same structure as (3.1),  but with 
an augmented (renormalized) diffusivity . I n  this case, a successive averaging procedure 
can be set up, exactly analogous to that described in $ 2 ,  and with the same conclusion, 
viz that, when R, B 1 ,  the effective eddy diffusivityP(k) acting on all Fjcales larger than 
k-l is given by 

(this result holding only for the range of k for which P ( k )  9 7) .  If the renormalization- 
group procedure can be rigorously justified, we t,hus conclude that,, in reflexionally 
symmetric turbulence, the eddy diffusivit’y acting upon a passive vector field is 
exactly equal to  that acting upon a passive scalar field. This is reminiscent of the 
claim of Parker (1971) who argued (from a Lagrangian standpoint) that  both diffu- 
sivities are given by Taylor’s formula (2 .2) .  The argument based on successive 
averaging is totally different, but the conclusion P = D is the same: plus $a change, 
plus c’est la m&ne chose ! But, of course, the expression (3.6) is not the same as the 
expression ( 2 . 2 ) .  

When the turbulence is not reflexionally symmetric, then, as observed above, 
equation ( 3 . 5 )  has a different structure from (3.1),  and an interesting departure from 
the scalar field problem is to be expected. The same change in structure of course 
appears in the multiple-scale approach of 5 2, in averaging over the innermost scale 
I,. However a second averaging process over the scale lnPl  does not lead to any further 
change of structure. This means that the successive averaging process can be established 
(as, in effect, found also by Bournier 1977), and transition to the limit n+ m, A,&+ 0 
(as in $ 2 )  leads to coupled differential equations for a ( k )  andP(k), somewhat analogous 
to (2.11). It would be inappropriate t’o go into the details here, but one important 
conclusion (as found by Kraichnan 1976a - see also Moffatt 1978, $7.11) is worth 
stating: the presence of an a-effect on small scales leads to a decrease in the effective 
diffusivity operating a t  larger scales. Kraichnan (1978) has argued that helicity 
fluctuations that are sufficiently extensive and persistent can even result in a negative 
total effective diffusivity - a conclusion that carries dramatic consequences as far as 
the (largest-scale) mean magnetic field is concerned. 

4. Vorticity dynamics and the energy cascade 
I n  1941, Kolmogorov presented his seminal paper ‘The local structure of turbulence 

in incompressible viscous fluid for very large Reynolds numbers’ in the Comptes 
Rendus (Dokludy) de l’dcndLmie des Sciences de 1’URSS. Wit’h characteristic brevity, 
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he introduced the concept of local isotropy, and his two similarity hypotheses, and he 
deduced that the mean square of the velocity difference a t  two points separated by a 
distance r is proportional to rs, provided (v3/e)* < r < 1,. The corresponding spectral 
statement (Batchelor 1953) is 

E(k)  = CeQ k- t  ( k ,  < k < ( E / v ~ ) ) ) .  (4.1) 

Kolmogorov’s theory of the local structure of turbulence was beautiful in its uni- 
versality, its simplicity, and its immediate applicability to  problems (such as the 
break-up of small droplets by turbulence - Kolmogorov 1949) in which the small- 
scale ingredients of the turbulence play a dominant role. Experimental results 
supporting the theory, and in particular the central conclusion (4.1), were therefore 
keenly sought during the 1950s) particularly in studies of atmospheric turbulence 
(Gurvich 1960). The difficulty was to find a field of turbulence a t  sufficiently high 
Reynolds number to guarantee an ‘inertial range ’ of wavenumbers of sufficient 
extent for the result (4.1) to  be convincingly demonstrated. 

In  1961, an important Colloquium on turbulence was held a t  Marseille, on the 
occasion of the openi,ig of the Institut de MBcanique Statistique de la Turbulence. It 
was my first experience of international meetings, and I approached i t  with a consider- 
able degree of excitement and expectation. Von KBrm6n was there, and so were 
Kolmogorov and G. I. Taylor. I recall that  von K&rm&n, in his opening address, said 
that, when he finally came face to face with his Creator, the first revelation he would 
supplicate would be an unfolding of the mysteries of turbulence.? Certain other events 
of the Marseille meeting stand out in my memory - and among these, the drama over 
the k-*-law was dominant. The experimental evidence presented a t  the meeting by 
Bob Stewart (subsequently published in J F M  - Grant, Stewart & Moilliet 1962) 
appeared to clinch matters: these experiments, conducted a t  a Reynolds number of 
3 x lo8 in the tidal channel between Vancouver Island and mainland Canada, pro- 
vided convincing support for the k-)-law, over several octaves, the value of C 
inferred from the experiments being 

C = 1-44? 0.06. ( 4 4  

So there it was: a classic example of long-awaited experimental evidence providing 
confirmation of a theoretical argument of central importance. 

And yet there was a serious problem, which was just beginning to surface at  that 
time, a problem that was to seriously affect the credibility of the Kolmogorov (1941) 
theory; this was the problem of intermittency, discussed in $ 5  of the paper by Grant 
et al. cited above. And indeed, a t  the same Margeille meeting, Kolmogorov himself 
turned his attention to  this problem - his paper is published (in English)$ in J F M  
(1962) volume 13 (see also the closely related paper by Oboukov 1962 in the same 
volume). This was one of the first papers which I, as a new reciwit to the J P M  editorial 
team, prepared for the Press - and it  was not an easy assignment ! By taking account 

t A similar sentiment is attributed to Horace Lamb, in the review ‘One hundred years of 

$ It was later published in both French and Russian i n  t h e  Proceedings of the Meeting. 
Lamb’s Hydrodynamics’ by L. Howarth ( J .  Fluad M e c h .  vol. 90, pp. 202-207). 



38 H .  K .  Moffatt 

of intermittent spatial fluctuations in the rate of dissipation 6 ,  Kolmogorov showed 
that (4.1) should be replaced by 

E ( k )  = Gej k-: (kZ,,-’, (4.3) 

where S is a small positive number. The same S appears in expressions for higher-order 
spectral quantities, which are more sensitive to intermittency effects - see Monin & 
Yaglom 1975, $25, where the estimaie 6 z 0-055 is given. The resulting modification 
of (4.3) was slight; the modification of the underlying similarity hypotheses was 
nevertheless profound. Gone was the beautiful simplicity of the earlier theory; from 
1961 on, no aspect of turbulence was to be ‘simple’. 

I have mentioned the renormalization-group technique, as developed by Forster 
et al. (1977) in the dynamical context (see also Rose & Sulem 1978; Frisch, Suleni & 
Nelkin 1978). Following the more simple-minded ‘ successive averaging ’ approach 
described in $92 and 3, one might now hope to exploit the analogy between (3.1) 
and (1.5) to obtain useful results. Here, one would take the view that small-scale 
vorticity is generated by convection and distortion of large-scale vorticity by small- 
scalevelocity - and build up a successive averaging procedure just as in $ 2 .  Despite 
the analogy, however, the procedure (in this simple form) does not work, and it is 
interesting to see why. If we consider a single realization of a turbulent flow contain- 
ing only two length scales I ,  and I, ( I l  + Z,), and we average the vorticity equation 
(1.5) over the inner scale I,, then we have to calculate 

(U2 A 02) = v .  (U,U, - $‘U? I), (4.4) 

where I is the unit dyadic. This expression is non-zero only if the statistical properties 
of u, are inhomogeneous. Such inhomogeneity will of course be induced by the non- 
uniform straining action of the larger scale field u1 - but this is an effect that  plays a 
negligible part in determining ( ~ ~ 8 , )  and (u, A b,) in the passive scalar and vector 
field problems. The vector field a, is not passive - it ‘reacts back’, via the relation 
O, = V A u,, on the velocity field u2 that generates it. This makes the dynamic 
problem much more subtle than the passive vector field problem - and it  would perhaps 
be pushing luck too far simply to carry over the eddy diffusivity P ( k )  given by (3.5) 
to  the dynamic context (and to relabel i t  ‘eddy viscosity’). This would be reminiscent 
of Heisenberg’s ( 1  948) expression 

where y is a constant of order unity - and a theory based on it would run into well- 
known difficulties a t  large wavenumbers (see Batchelor 1953, $7 .5 ) .  

The need to take account of the action of large-scale straining on small-scale 
vorticity was what motivated Pearson (1959) to  solve this problem on the basis of 
rapid distortion theory; this produced the surprising result that  {w;) in general 
increases without limit despite the action of viscosity. As argued by Monin & Yaglom 
(1975, $22.3) this infinity can be avoided by filtering out ‘irrelevant’ large-scale 
contributions to  Pearson’s vorticity field; this approach was in fact used by Novikov 
( 1  961 ) to yield an expression for the spectrum function in the far dissipation range 

E ( k )  Cc% k-3 (k IV)2g-4 e - a ( k W ,  (4.6) 

where I ,  is the Kolmogorov inner scale, and CT and a! are statistical parameters nssoci- 
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ated with the strain field. The approach is an attractive one, which could possibly 
provide an alternative starting point for the renormalization-group procedure. 

The phenomenon of intermittency has stimulated some imaginative approaches to  
the kinematics of turbulence - among which Mandelbrot’s (1974, 1975) description in 
terms of fractional dimension deserves special mention. If we permit ourselves for the 
moment to imagine turbulence in the limit v + 0,  then the question arises as to what is 
the limiting structure of the vorticity field in real space. The indications are that, if we 
start from some random smooth initial condition, then (d) will in general develop a 
singularity in a finite time, of order E,/uo, as conjectured by Brissaud et al. (1973).t 
The k-g-spectrum (or something very dose to i t)  will then extend to k = co; the time 
t ,  associated with eddies of scale k-l is then (on dimensional grounds) 

tk N 6-3 k-8, 

and this is also the time characteristic of energy transfer from scale k-l to scale (2k)-1; 
energy therefore cascades from ko to k = co in a total time of order 

reflecting the ‘ finite-time ’ singularity. A k-2-spectrum for the velocity field would 
reflect a physical structure having a finite number of discontinuities per unit length in 
any direction (e.g. the vortex sheet and line model of Townsend 1951 has this property). 
The slower fall-off described by the k-2 -spectrum suggests a (mildly) worse physical 
structure - e.g. a situation in which vortex sheets are in some regions infinitely con- 
voluted. Mandelbrot (1975) conceives of these surfaces as being so convoluted (in the 
limit u + O )  as to occupy a space of (Hausdorff) dimension intermediate between 2 
and 3 - an appealing idea, which however is difficult to incorporate in dynamical 
arguments based on the Navier-Stokes equation. 

I n  this regard, a phenomenon of the 70s has been the increasing awareness of 
‘pure’ mathematicians (i.e. those for whom rigour has top priority) of the rich fasci- 
nation of the Navier-Stokes equations and related nonlinear systems. The range of 
pure techniques that have been brought to bear on the problem of turbulence is 
admirably represented in Turbulence and Navier-Stokes Equations [Lecture Notes in 
Jlathematics (ed. R.:Temam) no. 565, Springer, 19761. In  reading this volume, one can- 
not fail to be struck by the contrast in linguistic style between the papers that i t  con- 
tains and ‘ typical ’ papers on turbulence published in J F N  (e.g. those to which I have 
referred in this article). As an example, I quote a tlieoreni of Scheffer (1976) (motivated 
by the ideas of blandelbrot concerning the relevance of ‘fractal’ dimension): ‘Let u 
be a “solution turbulente” with finite initial kinetic energy such that the initial 
conditions are smooth. Let T > 0 be given and set A = {ZG R3: the restriction of u to 
(x} x ( [ 0 ,  T ]  n (17, J.,” is a bounded function}. Then the Hausdorff dimension of 
R3 - A is at most 512. How many readers of J F M  could claim to feel a t  home with 
language such as this Z There is a danger of a severe communications barrier between 
‘purists ’ and ‘traditionalists’ arising from insufficient attempt on either side to 
express problems or results in terms that the other can comprehend. A new language 
barrier appears to  be developing here and, unfortunately, interpreters are as yet few. 
I n  this context, purists might do well to note that all significant advances in turbulence 

t In tliis contost, > P I %  tlio i i i t w c i q t i t i g  iic\v devrlopinrntq (liwiiscj(,(l I)y Sttf‘fiiinti. 111 t l i i q  voliunr. 
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theory in the past have been guided by powerful physical reasoning; mathematical 
techniques in isolation have had little to offer - except toil and tribulation ! 

5. Some comments on the 'rapid distortion' approach to shear flow 
turbulence 

The first edition of Townsend's monograph T h e  Structure of Turbulent Shear Flow 
was published in 1956, and the second edit'ion in 1976. An interesting insight into the 
changing ideas of the intervening period may be obtained from close comparison of 
the two editions. I n  particular, the whole of chapter 4, concerned in the original 
edition wit.h ' Uniform distortion of homogeneous turbulence ' was rewritten, and 
retitled ' Inhomogeneous shear flow '. I n  f 956, the emphasis had been on the distortion 
of turbulence by uniform irrotational &rain, whereas in 1976 the emphasis was shifted 
to the problem of int'eraction of turbulence with uniform shear flow. Townsend here 
reproduced the calculations of his 1970 J F M  paper in which he showed, remarkably, 
that  a finite shear of about 63" imposed on initially isotropic turbulence, can repro- 
duce quite accurat'ely eight' out of the nine principal correlation functions measured 
by Grant (1958) in a turbulent wake - and this all on the basis of a linear calculation ! 
The relevance of the uniform shear 'rapid distortion ' calculation, and the irrelevance 
of the earlier irrot'ational strain calculations in shear flow contexts, were simul- 
taneously esbablished. I may say that I gained some satisfaction myself from this 
considerable change of emphasis, having pressed the same point of view somewhat 
earlier (Moffatt 1967a)in the context of atmospheric turbulencewith strong windshear. 

As Deissler (1961) had shown even earlier, a crucially import'ant effect of mean 
shear acting on init'ially isotropic turbulence is the selective amplification of structures 
having large length scale in the mean flow direct'ion - a property that, reappeared in 
the very slow fall-off of Townsend's correlat,ion curves when t.he separation vector r 
is in t.he mean flow direction. 

Since 1970, rapid distortion theory has received a new lease of life, largely stimu- 
lated by the pioneering study of Hunt (1973) of the effects of turbulence in a stream 
incident on large bluff bodies. Here, irrotational distortion is relevant, as is the blocking 
effect of the solid boundary on large eddies. These effects have been encountered in 
numerous subsequent studies (see, e.g., Hunt & Graham 1977; Hunt 1978; Britter, 
Hunt & Mumford 1979). The success of rapid distortion theory, in which nonlinear 
interactions between turbulent fluctuat>ions are neglected for the duration of the 
distort'ion, again illustrates that ,  in some respects, shear flow t'urbulence can be ea.sier 
than homogeneous turbulence (with zero mean flow), in that a linearized model can at  
least provide a useful starting point. 

It is important to recognize that mpid distortion theory works best when a turbulent 
flow is subjected to a brutal change; i t  was originally devised t'o describe the effects of a 
contractionin awind tunnel; similarly, it might be expected to workwell for turbulent 
flowround asharp andsubstantial bendin a channel, in relating thestatistical properties 
of the turbulence immediately after the bend to  those immediately before the bend. 

Linearized theory is equally valid under other brutal changes in external conditions. 
For example, if a t'urbulent flow of a liquid metal is subjected to the sudden application 
of a strong magnetic field, it relaxes during an initial linear phase to a strongly aniso- 
tropic (indeed nearly two-dimensional) st'ructure (Moffat,t 1967 b ;  Alemany et nl. 1979). 
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6. Helicity and the topological structure of the vorticity field 
I would like to make some comments in this section on a topic that appears to me to 

be of fundamental interest in fluid mechanics generally, and also to have important 
implications for turbulence (some of which have been explored, for example, by 
Pouquet, Frisch & LBorat 1976). I t  was of course known to Kelvin (1868) that, when 
v = 0, p = p ( p )  and body forces (per unit mass) are conservative, vortex lines are frozeti 
in the fluid, and that in consequence knots and linkages in vortex lines are inevitably 
conserved. I wrote a paper (Moffatt 1969) showing that the helicity of a localized 
disturbance provides a measure of the degree of linkage of the associated vortex lines, 
and that helicity is conserved under the above conditions. A similar result had been 
proved in relation to the magnetic field in a perfectly conducting fluid by Woltjer 
(1956) and, indeed, it was through struggling to understand the physical meaning of 
Woltjer’s result that  I was led to think in terms of simple knots and linkages in con- 
vected vector fields generally. 

Only recently has it come to my attention that the result concerning conservation 
of helicity was proved earlier by Moreau (1961) in a brief paper entitled ‘Constantes 
d’un ilot tourbillonnaire en fluide parfait barotrope ’ in Comptes rendus de Z’Acade‘mie 
des Sciences. It is clear also, from the following extract from a footnote to the paper, 
that  Moreau appreciated the topological significance of his result: ‘ comme exemple 
d’ilot ayant un 2? non nul, nous proposons un systeme de deux anneaux tourbillon- 
naire de revolution, d’intensit6s respectives I1 et I ,  enlacks, le tout plong6 dans du 
fluide irrotationnel pour constituer un ilot D simplement connexe: on trouve alors 
H = H11z7. Moreau used the letter H (as in Helmholtz) for the integral of u. w; it is 
a good choice ! 

Indeed, as it turns out, i t  is an excellent choice because as pointed out by 
Kuznetsov & Mikhailov (1980) the invariant helicity is also identifiable with what is 
known to topologists as the Hopf invariant (Hopf 1931); i t  was shown by Whitehead 
(1947) that  this invariant may be expressed as a volume integral which, as he said, 
‘in the notation of vector calculus‘ is none other than the integral of the scalar 
product of a vector field and its curl. 

It seems to me that 2, being a quadratic invariant for a localized fluid motion 
(under the conditions defined above), has a status comparable with that of the kinetic 
energy associated with the disturbance. And yet kinetic energy appears to be much 
more fundamental, in that it can be defined for arbitrary dynaniical systems, whereas 
helicity can be defined only for a continuum (since it involves the vorticity field, which 
can be defined only for a continuum). Here again, however, Moreau (1977) has made 
what appears to me to be an observation of great interest, viz. that  conservation of 
helicity can be deduced by appropriate manipulation of Noether’s theorem (for which, 
see Courant & Hilbert 1953, p. 262). Energy, momentum and angular momentum are 
likewise invariants which can be obtained by manipulation of Noether’s theorem. 
Helicity thus appears to have status comparable with that of these classical invariants. 

For two linked vortex tubes of strengths K~ and K ~ ,  and each of small cross-section, 
the helicity invariant reduces to 2 n ~ ,  K ~ ,  where 

(6 .1 ) 
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where C,  and C, are closed curves along the axes of the two tubes; x l ~ C 1 ,  x,EC, 
and xI2 = x1 - x,. n is an integer - the winding number of C, with respect to C,. It is 
of great interest to  know whether there are any other topological invariants of any 
set of closed curves in three dimensions, analogous to (6.  I ) )  because cne would then be 
able to reconstruct corresponding volume integral invariants analogous t o  helicity - 
and we have no proof as yet that  such other invariants do not exist. The same question 
has been raised by Edwards (1967, 1968) not in the context of turbulence, but in 
ths context of the statistical mechanics of polymers, for which long-chain molecules 
may be linked and knotted in a topologically invariant manner. 

I t  is tempting to  suppose (as did Edwards) that, for a single closed knotted ciirve C, 
the double integral analogous to (6 .1))  viz. 

should be a topological invariant; but, as shown by Vologodskii et al. (1974) (by 
cxplicit example), this is not in fact the case. This is somewhat surprising, since the 
integral (6.2) is certainly convergent, and i t  seems to be the degenerate form of the 
helicity invariant when the vorticity is confined to a single tube along C. Close in- 
spection however shows that the helicity in this limit has an additional contribution 
from pairs of points x, X I  whose distance apart is comparable with the cross-sectional 
span of the tube; in fact, in the limit, 

wherer(s) is the torsion of C (afunction of position son  C). As C is distorted, changes in 
I are compensated by changes in the torsion term so that X survives as an invariant. 
The invariant (6.3) appears to  have been first obtained by CLlugLreanu (1959). 

Edwards (1967) also sought to construct an integral invariant characterizing the 
Borromean ring configuration - three rings, no two of which are linked, and yet which 
exhibit a ‘triple’ linkage. A vorticity field with thiF structure has zero helicity; is 
there then any other integral invariant that  characterizes the (conserved) topological 
configuration ? Edwards claimed to  have found such an invariant (which involved 
integration round all three curves of the Borromean configuration) - but I was unable 
to convert his expression to a volume integral analogous to  helicity; moreover, I am 
assured by topologists that i t  can be proved by homotopy theory that no ‘classical’ 
integral can possibly discriminate between the Borromean configuration and a 
eon figuration of three unlinked rings - the conclusion being that Edwards’s claim must 
in fact be wrong. 

There is, however, a small generalization of the helicity invariant that  I would like 
to put on record. First, let M = V A N and P = V A Q be convected vector fields 
w t isfying 

aM/a t  = v A (U A M), aP/at = v A (U A P), (6.4) 

a n d  let S be a closed material surface with unit normal n, on which n .  M = 0 (perma- 
ncvtly). Then it may easily be shown that 

I M P  = JF, M .  Q d v (6.5) 
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(the integral being over the volume V interior to  S) is an invariant under arbitrary 
fluid motion u. If we take M = P = B (magnetic field), then this is the Woltjer (1956) 
invariant; if M = P = w, then it is the helicity invariant; if M = B and P = w, it is 
the cross-helicity, also found by Woltjer (1956). 

Now let M = w and let P(x, 0) be the field obtained from w(x, 0) by the instan- 
taneous volume-preserving distortion x -+ X(x), i.e. 

Pi(X, 0) = Wj(X, 0) axi&. (6.6)  

P(x, t )  is then the field that evolves from P(x, 0) according to (6.4). Then, for each 
X(x), (6.5) provides a quadratic functional of the vorticity field which is constant in 
time. Moreover this invariant represents (in some sense) the degree of linkage of the 
w field and the P field. It is my belief that  invariants of this kind are the most general 
that can be obtainsd (in integral form), and that judicious choice of families of functions 
X(x) should permit complete discrimination between different topologica1 structures 
of vortex lines. It seems to me that this is an area where interaction between topo- 
logists and fluid dynamicists could be rewarding. 

The interest of helicity in the context of turbulence is of course that a new inviscid 
invariant implies some degree of constraint on the energy cascade process. Now, both 
energy and helicity are conserved by nonlinear interactions in the inertial range, and 
one must think in terms of a helicity cascade as well as an energy cascade, and of the 
possible coupling between these. Pioneering studies in this area have been carried out 
by Uriel Frisch and his group a t  the Observatoire de Nice in a series of papers (Frisch 
et al. 1975; Andre & Lesieur 1977; Pouquet & Patterson 1978), and by Kraichnan 
(1973, 1976a, b) .  The indications are that non-zero helicity in fact exerts only a mild 
restraining effect on the energy cascade process, that  helicity itself tends to  cascade 
(like a passive convected scalar) with a k-% spectrum, and that the relative helicity 
IF(E)I/ZkE(k) (where F ( k )  is the helicity spectrum function) tends to decrease with 
increasing k .  

What is really needed now is an experimental determination of the helicity spectrum 
in an experiment such as that of Ibbetson & Tritton (1975) in which the helicity is 
undoubtedly non-zero. This requires measurement of 

(u(x) . w(x +r)). (6.7) 

16.8) 

B first step towards this would be measurement of a correlation such as 

Wu1(0,0,0)  Cu&, 4 0 )  - %@, - 8,O)l) 

for small 8 ;  such a correlation is zero in reflexionally symmetric turbulence, and is non- 
zero only if circumstances are suitably contrived. A measurement of this kind would be 
of great interest - I issue this as an appeal (and a challenge) to experimental readers ! 

7. Postscript 
The J F M  time-scale may be 25 years, but 20 years appears to be a more appropriate 

unit for turbulence theory. Past landmarks of great significance, as discussed above, 
have been Taylor (1921), Kolmogorov (1941) and the Marseille meeting (1961) - and 
here we are now in 1981, amid a welter of new ideas injected partly from quantum field 
theory and statistical niechariics (e.g. t h e  renormalization-group approach) and partly 
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from pure mathematics (fractal dimension, strange attractors, development of singu- 
larities a t  finite time, etc.). Will the next 20 years bring a ‘solution’ to the problem of 
turbulence! I doubt it; but I hope that, by the year 2001, some a t  least of the ideas 
touched on in this article may have been more fully developed, and may lead to 
improved understanding of the effects of turbulence in circumstances where it really 
matters. 

I have had some interesting discussions concerning the material of G with Dr Brian 
Pollard (Bristol University) who drew my attention to  the paper by CBlugLreanu 
(1959). I would like to thank also Professor J.-J. Moreau, who sent me copies of his 
reprints which would otherwise have been inaccessible to  me. Thanks also to  Dr Y. 
Yomeau who explained homotopy theory to  me (as i t  applies to the Borromean rings) 
in terms that I could understand. 
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